Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Med ; 15(7): e1002629, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30063714

RESUMO

BACKGROUND: Heatwaves are a critical public health problem. There will be an increase in the frequency and severity of heatwaves under changing climate. However, evidence about the impacts of climate change on heatwave-related mortality at a global scale is limited. METHODS AND FINDINGS: We collected historical daily time series of mean temperature and mortality for all causes or nonexternal causes, in periods ranging from January 1, 1984, to December 31, 2015, in 412 communities within 20 countries/regions. We estimated heatwave-mortality associations through a two-stage time series design. Current and future daily mean temperature series were projected under four scenarios of greenhouse gas emissions from 1971-2099, with five general circulation models. We projected excess mortality in relation to heatwaves in the future under each scenario of greenhouse gas emissions, with two assumptions for adaptation (no adaptation and hypothetical adaptation) and three scenarios of population change (high variant, median variant, and low variant). Results show that, if there is no adaptation, heatwave-related excess mortality is expected to increase the most in tropical and subtropical countries/regions (close to the equator), while European countries and the United States will have smaller percent increases in heatwave-related excess mortality. The higher the population variant and the greenhouse gas emissions, the higher the increase of heatwave-related excess mortality in the future. The changes in 2031-2080 compared with 1971-2020 range from approximately 2,000% in Colombia to 150% in Moldova under the highest emission scenario and high-variant population scenario, without any adaptation. If we considered hypothetical adaptation to future climate, under high-variant population scenario and all scenarios of greenhouse gas emissions, the heatwave-related excess mortality is expected to still increase across all the countries/regions except Moldova and Japan. However, the increase would be much smaller than the no adaptation scenario. The simple assumptions with respect to adaptation as follows: no adaptation and hypothetical adaptation results in some uncertainties of projections. CONCLUSIONS: This study provides a comprehensive characterisation of future heatwave-related excess mortality across various regions and under alternative scenarios of greenhouse gas emissions, different assumptions of adaptation, and different scenarios of population change. The projections can help decision makers in planning adaptation and mitigation strategies for climate change.


Assuntos
Mudança Climática/mortalidade , Efeito Estufa/mortalidade , Temperatura Alta/efeitos adversos , Causas de Morte , Exposição Ambiental/efeitos adversos , Efeito Estufa/prevenção & controle , Gases de Efeito Estufa/efeitos adversos , Humanos , Medição de Risco , Fatores de Risco , Fatores de Tempo
2.
Environ Health Perspect ; 125(8): 087006, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28886602

RESUMO

BACKGROUND: Few studies have examined variation in the associations between heat waves and mortality in an international context. OBJECTIVES: We aimed to systematically examine the impacts of heat waves on mortality with lag effects internationally. METHODS: We collected daily data of temperature and mortality from 400 communities in 18 countries/regions and defined 12 types of heat waves by combining community-specific daily mean temperature ≥90th, 92.5th, 95th, and 97.5th percentiles of temperature with duration ≥2, 3, and 4 d. We used time-series analyses to estimate the community-specific heat wave-mortality relation over lags of 0-10 d. Then, we applied meta-analysis to pool heat wave effects at the country level for cumulative and lag effects for each type of heat wave definition. RESULTS: Heat waves of all definitions had significant cumulative associations with mortality in all countries, but varied by community. The higher the temperature threshold used to define heat waves, the higher heat wave associations on mortality. However, heat wave duration did not modify the impacts. The association between heat waves and mortality appeared acutely and lasted for 3 and 4 d. Heat waves had higher associations with mortality in moderate cold and moderate hot areas than cold and hot areas. There were no added effects of heat waves on mortality in all countries/regions, except for Brazil, Moldova, and Taiwan. Heat waves defined by daily mean and maximum temperatures produced similar heat wave-mortality associations, but not daily minimum temperature. CONCLUSIONS: Results indicate that high temperatures create a substantial health burden, and effects of high temperatures over consecutive days are similar to what would be experienced if high temperature days occurred independently. People living in moderate cold and moderate hot areas are more sensitive to heat waves than those living in cold and hot areas. Daily mean and maximum temperatures had similar ability to define heat waves rather than minimum temperature. https://doi.org/10.1289/EHP1026.


Assuntos
Calor Extremo , Mortalidade/tendências , Brasil , Humanos , Taiwan
3.
Environ Health Perspect ; 124(10): 1554-1559, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27258598

RESUMO

BACKGROUND: The evidence and method are limited for the associations between mortality and temperature variability (TV) within or between days. OBJECTIVES: We developed a novel method to calculate TV and investigated TV-mortality associations using a large multicountry data set. METHODS: We collected daily data for temperature and mortality from 372 locations in 12 countries/regions (Australia, Brazil, Canada, China, Japan, Moldova, South Korea, Spain, Taiwan, Thailand, the United Kingdom, and the United States). We calculated TV from the standard deviation of the minimum and maximum temperatures during the exposure days. Two-stage analyses were used to assess the relationship between TV and mortality. In the first stage, a Poisson regression model allowing over-dispersion was used to estimate the community-specific TV-mortality relationship, after controlling for potential confounders. In the second stage, a meta-analysis was used to pool the effect estimates within each country. RESULTS: There was a significant association between TV and mortality in all countries, even after controlling for the effects of daily mean temperature. In stratified analyses, TV was still significantly associated with mortality in cold, hot, and moderate seasons. Mortality risks related to TV were higher in hot areas than in cold areas when using short TV exposures (0-1 days), whereas TV-related mortality risks were higher in moderate areas than in cold and hot areas when using longer TV exposures (0-7 days). CONCLUSIONS: The results indicate that more attention should be paid to unstable weather conditions in order to protect health. These findings may have implications for developing public health policies to manage health risks of climate change. CITATION: Guo Y, Gasparrini A, Armstrong BG, Tawatsupa B, Tobias A, Lavigne E, Coelho MS, Pan X, Kim H, Hashizume M, Honda Y, Guo YL, Wu CF, Zanobetti A, Schwartz JD, Bell ML, Overcenco A, Punnasiri K, Li S, Tian L, Saldiva P, Williams G, Tong S. 2016. Temperature variability and mortality: a multi-country study. Environ Health Perspect 124:1554-1559; http://dx.doi.org/10.1289/EHP149.

4.
Epidemiology ; 25(6): 781-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25166878

RESUMO

BACKGROUND: Studies have examined the effects of temperature on mortality in a single city, country, or region. However, less evidence is available on the variation in the associations between temperature and mortality in multiple countries, analyzed simultaneously. METHODS: We obtained daily data on temperature and mortality in 306 communities from 12 countries/regions (Australia, Brazil, Thailand, China, Taiwan, Korea, Japan, Italy, Spain, United Kingdom, United States, and Canada). Two-stage analyses were used to assess the nonlinear and delayed relation between temperature and mortality. In the first stage, a Poisson regression allowing overdispersion with distributed lag nonlinear model was used to estimate the community-specific temperature-mortality relation. In the second stage, a multivariate meta-analysis was used to pool the nonlinear and delayed effects of ambient temperature at the national level, in each country. RESULTS: The temperatures associated with the lowest mortality were around the 75th percentile of temperature in all the countries/regions, ranging from 66th (Taiwan) to 80th (UK) percentiles. The estimated effects of cold and hot temperatures on mortality varied by community and country. Meta-analysis results show that both cold and hot temperatures increased the risk of mortality in all the countries/regions. Cold effects were delayed and lasted for many days, whereas heat effects appeared quickly and did not last long. CONCLUSIONS: People have some ability to adapt to their local climate type, but both cold and hot temperatures are still associated with increased risk of mortality. Public health strategies to alleviate the impact of ambient temperatures are important, in particular in the context of climate change.


Assuntos
Clima , Saúde Global , Mortalidade/tendências , Temperatura , Adaptação Fisiológica , Humanos , Estações do Ano
5.
Sci Rep ; 4: 5509, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24981315

RESUMO

Bayesian statistical inference with a case-crossover design was used to examine the effects of air pollutants {Particulate matter <10 µm in aerodynamic diameter (PM10), sulphur dioxide (SO2), and ozone (O3)} on mortality. We found that all air pollutants had significant short-term impacts on non-accidental mortality. An increase of 10 µg/m(3) in PM10, 10 ppb in O3, 1 ppb in SO2 were associated with a 0.40% (95% posterior interval (PI): 0.22, 0.59%), 0.78% (95% PI: 0.20, 1.35%) and 0.34% (95% PI: 0.17, 0.50%) increase of non-accidental mortality, respectively. O3 air pollution is significantly associated with cardiovascular mortality, while PM10 is significantly related to respiratory mortality. In general, the effects of all pollutants on all mortality types were higher in summer and winter than those in the rainy season. This study highlights the effects of exposure to air pollution on mortality risks in Thailand. Our findings support the Thailand government in aiming to reduce high levels of air pollution.


Assuntos
Poluição do Ar/estatística & dados numéricos , Doenças Cardiovasculares/mortalidade , Transtornos Respiratórios/mortalidade , Estações do Ano , Taxa de Sobrevida , Comorbidade , Humanos , Incidência , Fatores de Risco , Tailândia/epidemiologia
6.
Environ Health ; 11: 36, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22613086

RESUMO

BACKGROUND: The association between temperature and mortality has been examined mainly in North America and Europe. However, less evidence is available in developing countries, especially in Thailand. In this study, we examined the relationship between temperature and mortality in Chiang Mai city, Thailand, during 1999-2008. METHOD: A time series model was used to examine the effects of temperature on cause-specific mortality (non-external, cardiopulmonary, cardiovascular, and respiratory) and age-specific non-external mortality (<=64, 65-74, 75-84, and > =85 years), while controlling for relative humidity, air pollution, day of the week, season and long-term trend. We used a distributed lag non-linear model to examine the delayed effects of temperature on mortality up to 21 days. RESULTS: We found non-linear effects of temperature on all mortality types and age groups. Both hot and cold temperatures resulted in immediate increase in all mortality types and age groups. Generally, the hot effects on all mortality types and age groups were short-term, while the cold effects lasted longer. The relative risk of non-external mortality associated with cold temperature (19.35°C, 1st percentile of temperature) relative to 24.7°C (25th percentile of temperature) was 1.29 (95% confidence interval (CI): 1.16, 1.44) for lags 0-21. The relative risk of non-external mortality associated with high temperature (31.7°C, 99th percentile of temperature) relative to 28°C (75th percentile of temperature) was 1.11 (95% CI: 1.00, 1.24) for lags 0-21. CONCLUSION: This study indicates that exposure to both hot and cold temperatures were related to increased mortality. Both cold and hot effects occurred immediately but cold effects lasted longer than hot effects. This study provides useful data for policy makers to better prepare local responses to manage the impact of hot and cold temperatures on population health.


Assuntos
Doenças Cardiovasculares/mortalidade , Clima , Doenças Respiratórias/mortalidade , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/epidemiologia , Temperatura Baixa/efeitos adversos , Temperatura Alta/efeitos adversos , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Dinâmica não Linear , Distribuição de Poisson , Doenças Respiratórias/epidemiologia , Estações do Ano , Tailândia/epidemiologia , Fatores de Tempo , Saúde da População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...